
Making PDFs Accessible for Visually
Impaired Users (and Findable

for Everybody Else)

Ruben van Heusden(B) , Hazel Ling, Lars Nelissen, and Maarten Marx(B)

Information Retrieval Lab, Informatics Institute, University of Amsterdam,
Amsterdam, Netherlands

{r.j.vanheusden,maartenmarx}@uva.nl
https://irlab.science.uva.nl

Abstract. We treat documents released under the Dutch Freedom of
Information Act as FAIR scientific data and find that they are not find-
able nor accessible, due to text malformations caused by redaction soft-
ware. Our aim is to repair these documents. We propose a simple but
strong heuristic for detecting wrongly OCRed text segments, and we then
repair only these OCR mistakes by prompting a large language model.
This makes the documents better findable through full text search, but
the repaired PDFs do still not adhere to accessibility standards. Con-
verting them into HTML documents, keeping all essential layout and
markup, makes them not only accessible to the visually impaired, but
also reduces their size by up to two orders of magnitude. The costs of
this way of repairing are roughly one dollar for the 17K pages in our
corpus, which is very little compared to the large gains in information
quality.

Keywords: Optical Character Recognition · Corpus Curation ·
Quality Control · Digital Libraries

1 Introduction

The guidelines of the European Union on the re-usability of data stipulate that
data released by governments should be reusable [8]. In fact, the guidelines pre-
scribed bear a strong resemblance to the FAIR data principles [17]: released data
should be findable, accessible, interoperable and indeed reusable. Findability and
accessibilty, in particular for the visually impaired, are greatly hampered by the
application of redaction software to documents that the government is obliged to
release under the Freedom of Information Act. This redaction software is used to
black out text for reasons of privacy, national security, competition, etc., using
named entity recognition techniques [5].

Github: https://github.com/irlabamsterdam/accessibilifier.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Alonso et al. (Eds.): TPDL 2023, LNCS 14241, pp. 239–245, 2023.
https://doi.org/10.1007/978-3-031-43849-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43849-3_21&domain=pdf
http://orcid.org/0000-0001-9204-9220
http://orcid.org/0000-0003-3255-3729
https://github.com/irlabamsterdam/accessibilifier
https://doi.org/10.1007/978-3-031-43849-3_21


240 R. van Heusden et al.

The definition of visual impairment, as specified by the World Wide Web
Consortium (W3C), states that someone who is visually impaired is not blind,
but whose vision is severely limited, even with the use of glasses or other imple-
ments.1 Visually impaired individuals often use additional software, (e.g. for
magnification or speak aloud) which uses the machine readable text in a PDF.

We found that 30% of over 1 million text pages released by the Dutch govern-
ment does not contain a signle machine readable character, and almost all other
pages contain non existing words, most likely caused by OCR errors. Believe
it or not, but treating brand new digital born documents as if they originate
from the 19th century is common practice in redaction software: scan the doc-
ument, black out the detected text, and, if one is lucky, make the text on the
scan also machine interpretable using optical character recognition (OCR). Of
course, this is effective in ensuring that redacted text cannot be brought back [3],
but is detrimental from the perspective of information quality. Full text search
in these documents will not work well [15], and listening to automatically read
aloud documents without machine readable text or text containing sequences of
malformed words is not informative nor pleasant.

The research reported in this paper originates in this problem and our wish
to repair the damage done to these documents. We do this in three consecu-
tive steps: discover segments of mangled OCRed text using a simple heuristic,
repair these segments using a Large Language Model (ChatGPT), and convert
the inaccessible PDF into XML containing the repaired text. The converted text
then does apply to accessibility standards2 and as a bonus is typically two orders
of magnitude smaller in size [10]. Although it does not need training data, the
mangled OCR segment heuristic works well. Only repairing those segments is
more efficient, cheaper and helps avoiding false positives. We compare repair-
ing by Tesseract and by ChatGPT, with the latter producing less non-existing
words, but having a slightly higher Word Error Rate due to hallucination, besides
from being more expensive both in processing time and costs. Both methods are
effective in reducing the average length of mangled segments, thus improving
accessibility, as shorter segments of mangled words are easier to still understand
when hearing them spoken through Text-to-Speech software.

If anything, this work highlights the need for organizations and governments
to take accessibility seriously, and to prevent the problems pointed out in this
paper by changing their workflow at the source, where mistakes are easier to
fix than the reconstruction and correction steps that have to be taken when
post-correcting mistakes.

2 Related Work

Techniques for automatic detection of OCR error vary from dictionary look-
ups and ngram methods to more recent sequence-to-sequence models, as well
as unsupervised methods that rely on known-good background corpora [1,2,4,
1 https://www.w3.org/TR/low-vision-needs/.
2 https://www.iso.org/standard/58625.html.

https://www.w3.org/TR/low-vision-needs/
https://www.iso.org/standard/58625.html


Making PDFs Accessible for Visually Impaired Users 241

14]. These researchers typically not only detect bad segments of text, but also
propose methods for repairing it, such as using ngram probabilities to replace
low-probability ngrams with higher probability ones, or by using a sequence-to-
sequence models to ’translate’ the incorrect words [1,2]. Recently, a pipeline that
combines much of the aforementioned techniques has been presented for OCR
error detection in the Dutch language [6]. The system, named QuPipe, combines
dictionary lookup, trigrams, garbage detection, language detection and statistics
on word and document level to detect errors in historical Dutch news articles.

A work that is conceptually close to ours is that of Schaefer & Neudecker
[13], who also employ a two-step detection and correction pipeline for OCR
post-correction on historical documents. In their work they train a character-
level LSTM to detect OCR mistakes in the input text and repair them using a
trained sequence-to-sequence model. However, since we do not have ground truth
data, we cannot train an LSTM model to detect bad segments, and instead use
an unsupervised method. We do however follow their reasoning in opting for
a high precision detector model. Turró [16] mentions that the most accessible
form of a PDF contains tags that define the structural elements of the PDF. A
way to create these structural tags from a PDF is to use pdfthtml, a tool that
is included in the poppler package and that outputs information regarding the
fonts and positions of the text.

3 Method

3.1 Data

For the evaluation of our approach we use the cleanest part of the 1 million page
corpus of Dutch Freedom of Information Act (Woo in Dutch) [12] documents [9].
This part consists of 4K decision letters (17K pages) coming from Dutch min-
istries written in 2020–2022 by legally trained civil servants. These documents
are digital born, carefully drafted and edited and hence virtually error free, and
with a simple layout and markup.The machine readable text from the PDFs is
extracted with pdftotext, part of the Xpdf suite of PDF tools.

3.2 Mangled OCR Detection and Repair

Detection of segments of mangled text goes as follows. We use a word list
consisting of the OpenTaal list3, combined with the vocabulary extracted from
the Dutch subcorpus of the ParlaMint project [7]. This corpus contains the
manual transcriptions of parliamentary debates, and is of very high quality,
thus also virtually error free and contains words that are roughly in the same
genre as the decision letters. The combined word list contains 650K words, with
410K in the intersection of both lists, 300K exclusive to the TaalUnie list, and
130K exclusive to the parliamentary vocabulary.

3 https://github.com/OpenTaal/opentaal-wordlist.

https://github.com/OpenTaal/opentaal-wordlist


242 R. van Heusden et al.

We define N -mangled segments as maximal sequences of Out-Of-Vocabulary
(OOV) tokens, which may contain subsequences of In-Vocabulary words of at
most length N . Mangled segments must start and end with an OOV token.
We call tokens in mangled segments MTTs (short for Mangled Text Tokens).
Note that an MTT can be both an Out-Of- or an In-Vocabulary token. We
experimented with the value of N and found N = 3 to yield the most natural
“mangled segments”. In the rest of the paper this N = 3 is fixed. In the sentence,
“H1erb1j w1l ik u graag leten wetn dat uw verzoek is geweigerd.” the mangled
segment is underlined and it contains a bold triple of 3 In-Vocabulary Dutch
words. In the second step, we repair the OCR mistakes in the detected segments.
We compare three strategies. As a strong baseline we OCR the complete text
again with Tesseract 5.0 configured for Dutch. We detect mangled segments in
both the original text and in the output of Tesseract and send these segments
to ChatGPT to be corrected. We use the gpt-3.5-turbo model instance trough
the OpenAI API. We have experimented with different prompts, with the best
performing one being the following:

Correct the spelling mistakes in the following Dutch text delimited by
triple backticks and remove the triple backticks afterwards. Leave the cor-
rect words untouched.

We then insert the corrected segments back into the original text, and perform
mangled segment detection again.

3.3 Document Transformation

In order to make the Woo documents more accessible, the PDFs are converted
to the more accessible XML format. In fact we convert to Markdown, which is
trivially convertable back and forth to XML. Using the pdftohtml tool4, the text,
along with layout information, is transformed from PDF into XML, preserving
headings, paragraphs and reading order. In turn the XML is then converted into
Markdown format. The converter primarily focuses on the position, font size, and
font style of a specific piece of text. Based on these characteristics, it determines
whether it is a heading, paragraph, or emphasis. For example, by analyzing the
differences in font sizes of the headings, the order of nested headings, and thus
the reading order, is determined. Hyperlinks and emphasis from the PDF are
effectively captured using the ’pdftohtml’ library and are directly transferred.
The alt text for images is generated using the LAVIS image captioning library
from Salesforce5.

3.4 Evaluation

To evaluate the performance of the correction methods for the mangled segments,
the mangled segments of 10 documents (totalling 227 segments and 672 words)
4 https://linux.die.net/man/1/pdftohtml.
5 https://github.com/salesforce/LAVIS.

https://linux.die.net/man/1/pdftohtml
https://github.com/salesforce/LAVIS


Making PDFs Accessible for Visually Impaired Users 243

were extracted and corrected with all three methods, and the Word Error Rate
(WER) [11] was calculated by visually comparing the original text in the PDF
with the corrected segment. We also noted whether a mistake was the result of
a hallucination, or an OCR error.

To evaluate the pdftomarkdown conversion tool, we randomly selected 20
PDF documents from the corpus. The converted documents were then compared
to the original documents based on information retention. For each document,
the presence of errors in the converted file was examined for each tag.

Fig. 1. Comparison between the original text and Tesseract for the number and length
of mangled segments, and the number of MTTs (N=17,613 pages).

4 Results

4.1 OCR Correction

Figure 1 displays the effect on the mangled segments when correcting OCR
mistakes using Tesseract. The distribution of the number of mangled seg-
ments remains roughly the same, but both the number of MTTs and the
length of the mangled segments decreases significantly. Roughly 70% per-
cent of the mangled segments after correction by Tesseract were contained
within mangled segments in the original text. This indicates that most
of the time Tesseract shortens mangled segments, and often drastically.

Table 1. Comparison of the Tesseract, ChatGPT and Tesser-
act+ChatGPT correction strategies, with the statistics averaged
over pages.(N=17,613) ChatGPT corrections were performed on
a random sample of 100 pages due to processing times.

Method Number of
MTTs

Number of Mang-
led Segments

Mangled Segment
Length

original 41.98 9.54 4.4
original+ChatGPT 15.42 4.17 3.7
Tesseract 20.15 7.87 2.5
Tesseract+ChatGPT 14.42 5.27 2.7

Table 1 shows
that all three cor-
rection strategies
greatly reduce the
number of MTTs
in the original text
as well as the num-
ber and the length
of the mangled seg-
ments per page.
Although Tesser-
act removes many



244 R. van Heusden et al.

OCR errors, applying ChatGPT on mangled segments remaining in Tesseract’s
output further reduces the mean number of MTTs and the number of mangled
segments.

The WER of the text corrected by ChatGPT, Tesseract, and first Tessearct
and then ChapGPT was 11, 7 and 3%, respectively (N = 672 words). Mistakes
made by Tesseract are always out-of-vocabulary terms. With ChatGPT however,
half of its mistakes are vocabulary terms, thus harder to spot, and sometimes
leading to confusing text.

Costs. For our corpus of 17K pages, extracting the machine readable text from
the PDF using pdftotext and detecting the mangled segments takes less than
2min on a 2019 Macbook Pro with 16 GB of RAM and an 8th generation
i5 CPU. Running Tesseract takes 5 h and running ChatGPT takes 50 h. The
monetary expenses are very reasonable given the large increase in information
quality. With an hour price of 2.5 dollar cent at Amazon6, running Tesseract
costs 12.5 cents. The costs for ChatGPT based on the pricing from OpenAI7
of 0.2 dollar cents per 1000 tokens then comes to 80 cents (based on sending
mangled segments with in total 400K tokens).

4.2 Accessibility Improvement

The 20 documents used for testing the conversion to HTML contained 184 head-
ing and 593 paragraph elements, which were correctly converted with an accuracy
of 0.84 and 0.67 respectively. In the final HTML versions, the documents were
roughly 156 times smaller than the original PDF file when compressed with gzip.

5 Conclusion

Findability and accessibility of PDF documents which have been severely dam-
aged by redaction software can be greatly improved using simple out-of-the-box
technology like Tesseract and ChatGPT. Converting the PDFs to markdown or
HTML, and thereby making layout elements like headings, paragraphs and lists
explicit can be done with good accuracy and as a bonus drastically reduces the
size of documents. A point of attention should be given to the manner in which
ChatGPT repairs OCR mistakes. Whereas mistakes made by Tesseract are easy
to spot because they are most often non-existing words, ChatGPT’s mistakes
are often In-Vocabulary words which on careless reading could be mistaken as
correct. As we deal with official governmental documents such mistakes could
be worse than “normal OCR mangling”. As an example, in our manual eval-
uation we found that the original term “verkregen” (obtained) was OCRed as
“verkragan” which ChatGPT replaced by “verkrachten” (to rape).

6 https://aws.amazon.com/ec2/pricing/on-demand/.
7 https://openai.com/pricing.

https://aws.amazon.com/ec2/pricing/on-demand/
https://openai.com/pricing


Making PDFs Accessible for Visually Impaired Users 245

Acknowledgements. This research was supported in part by the Netherlands
Organization for Scientific Research (NWO) through the ACCESS project grant
CISC.CC.016.

References

1. Ahmed, F., Luca, E.W.D., Nürnberger, A.: Revised N-gram based automatic
spelling correction tool to improve retrieval effectiveness. Polibits 40, 39–48 (2009)

2. Amrhein, C., Clematide, S.: Supervised OCR error detection and correction using
statistical and neural machine translation methods. J. Lang. Technol. Comput.
Linguist. (JLCL) 33(1), 49–76 (2018)

3. Bland, M., Iyer, A., Levchenko, K.: Story beyond the eye: glyph positions break
PDF text redaction. arXiv preprint arXiv:2206.02285 (2022)

4. Booth, C., Shoemaker, R., Gaizauskas, R.: A language modelling approach to qual-
ity assessment of OCR’ed historical text. In: Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference (LREC), pp. 5859–5864 (2022)

5. Data protection commission: redacting documents and records (2021).
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/
%20Documents/%20and/%20Records.pd

6. Cuper, M.: Examining a multi layered approach for classification of OCR quality
without ground truth. Digit. Humanit. Benelux J. 43 (2022)

7. Erjavec, T., et al.: The Parlamint corpora of parliamentary proceedings. Lang.
Resour. Eval. 415–448 (2022)

8. European commission: a European strategy for data. Technical Report (2020).
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0066

9. Marx, M.: Woogle dump. Technical Report, DANS (2023), https://doi.org/10.
17026/dans-zau-e3rk

10. Marx, M., Gielissen, T.: Digital weight watching: reconstruction of scanned docu-
ments. Int. J. Doc. Anal. Recognit. (IJDAR) 14, 229–239 (2011)

11. McCowan, I.A., et al.: On the Use of Information Retrieval Measures for Speech
Recognition Evaluation. Technical Report, IDIAP (2004)

12. Rijksoverheid: wet open Overheid (woo) (2023). https://www.rijksoverheid.nl/
onderwerpen/wet-open-overheid-woo

13. Schaefer, R., Neudecker, C.: A two-step approach for automatic OCR post-
correction. In: Proceedings of the 4th Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pp.
52–57 (2020)

14. Strange, C., McNamara, D., Wodak, J., Wood, I.: Mining for the meanings of a
murder: the impact of OCR quality on the use of digitized historical newspapers.
Digit. Hum. Q. 8, 16 p. (2014)

15. Traub, M.C., Samar, T., Van Ossenbruggen, J., Hardman, L.: Impact of crowd-
sourcing OCR improvements on retrievability bias. In: Proceedings of the 18th
ACM/IEEE on Joint Conference on Digital Libraries, pp. 29–36 (2018)

16. Turró, M.R.: Are pdf documents accessible? Inf. Technol. Librar. 27(3), 25–43
(2008). https://doi.org/10.6017/ital.v27i3.3246, https://ejournals.bc.edu/index.
php/ital/article/view/3246

17. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data manage-
ment and stewardship. Sci. Data 3(1), 1–9 (2016)

http://arxiv.org/abs/2206.02285
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/%20Documents/%20and/%20Records.pd
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/%20Documents/%20and/%20Records.pd
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0066
https://doi.org/10.17026/dans-zau-e3rk
https://doi.org/10.17026/dans-zau-e3rk
https://www.rijksoverheid.nl/onderwerpen/wet-open-overheid-woo
https://www.rijksoverheid.nl/onderwerpen/wet-open-overheid-woo
https://doi.org/10.6017/ital.v27i3.3246
https://ejournals.bc.edu/index.php/ital/article/view/3246
https://ejournals.bc.edu/index.php/ital/article/view/3246

