
Detection of Redacted Text in Legal
Documents

Ruben van Heusden(B) , Aron de Ruijter, Roderick Majoor,
and Maarten Marx(B)

Information Retrieval Lab, Informatics Institute, University of Amsterdam,
Amsterdam, Netherlands

{r.j.vanheusden,maartenmarx}@uva.nl
https://www.irlab.science.uva.nl

Abstract. We present a technique for automatically detecting redacted
text in legal documents, using a combination of Optical Character Recog-
nition (OCR) and morphological operations from the Computer Vision
domain, allowing us to detect a wide variety of different types of redac-
tion blocks with little to no training data. As this is a segmentation task,
we evaluate our technique using the Panoptic Quality methodology, with
the algorithm obtaining F1 scores of 0.79, 0.86 and 0.76 on black, col-
ored and outlined redaction blocks respectively, and an F1 score of 0.62
for gray blocks. The total running time of the algorithm is two seconds
on average measured on a thousand pages from a government supplier,
with roughly 98% of this time being used by Tesseract and the conver-
sion from PDF to PNG, and 2% by the detection algorithm. Detecting
text redaction at scale thus is feasible, allowing a more or less objective
measurement of this practice.The redacted text detection code and the
manually labelled dataset created for evaluation is released via Github.

Keywords: Text Redaction · Image Segmentation · Panoptic Quality

1 Introduction

Redacted text is text that has been made unreadable or has been covered up.
This can be due to privacy and legal reasons, or because the text reflects the
opinion of an employee, or because of commercial conflicts that might arise from
the publication of the data [5]. Multiple countries have Freedom of Information
acts that require governmental bodies to release documents upon the request
of civilians [7,13]. This has resulted in multiple commercial text redaction tools
in use by governments to speed up the very time-consuming manual redaction
process. The form of redacted text varies, from (traditional) completely black
filling to gray bars to completely white pieces, and even manual crossing out
with a pen, see Fig. 1. A tool as Zylab [14] has a white with black border option,
as several scandals have given the blacked out version a bad connotation and the

Github: https://github.com/irlabamsterdam/TPDLTextRedaction
Demo: https://lakdetector.wooverheid.nl.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. Alonso et al. (Eds.): TPDL 2023, LNCS 14241, pp. 310–316, 2023.
https://doi.org/10.1007/978-3-031-43849-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43849-3_28&domain=pdf
http://orcid.org/0000-0001-9204-9220
http://orcid.org/0000-0003-3255-3729
https://github.com/irlabamsterdam/TPDLTextRedaction
https://lakdetector.wooverheid.nl
https://doi.org/10.1007/978-3-031-43849-3_28


Detection of Redacted Text in Legal Documents 311

white fill with black borders is more ’social-media friendly’ and less aggressive-
looking.

The task of automatic recognition of redacted text has not yet been described
as such in the literature. It is briefly mentioned by Bland et al. [2], as part of
their algorithm to de-redact text from legal documents. Their detection step is
based on the location of characters in a PDF document, but this approach does
not work on scanned-in documents, where this information is not present.

Fig. 1. Examples of the four most common types of text redaction blocks. Codes like
5.1.2.e inserted in the redacted regions indicate the legal article used to redact the
particular piece of text.

The main problem of redacted text detection is to ensure high recall, while
avoiding picking up logo’s, images, layout structures and other noise from the
page [2]. This problem is complicated by the fact that there is a large variety
of different types of text redaction, as described above. The task can be seen as
the complement of document-image segmentation, in which the goal is to detect
the text present in an image of a document [3].

We present an unsupervised approach for detecting redacted text blocks by
using Tesseract to detect and remove regular/unredacted text from the image,
after which we use morphological operations to remove text missed by Tesseract,
similar to the approach used by Bloomberg [3]. Finally we filter out shapes that
are too big or too small, or that are taller than they are wide, reducing the
amount of false positives. This approach needs no external training data (except
for Tesseract, which has been trained on large amounts of text), and is not limited
to detecting black or gray blocks, but can also detect blocks with outlines, and
colored blocks.

By being able to automatically detect redacted text with a high confidence
we can gather statistics on how much text has been redacted in a corpus of
released documents, e.g., the distribution of the redacted character ratio per
page. These then can be compared across different governmental bodies.



312 R. van Heusden et al.

Our algorithm performs well on black, colored and outlined redaction blocks,
with F1 (PQ’s recognition quality) scores of 0.79 and 0.86 and 0.76 respectively.
Recall for gray blocks is hard, resulting in a somewhat lower F1 of 0.69. The
overall F1 measured on 1.530 items is 0.77.

2 Related Work

Bloomberg [3] presents a method for segmenting an image into text and non-text
pieces, using the morphological operations erosion and dilation, which respec-
tively add and remove pixels from the boundaries of objects. These operations
are useful, as they can be used to remove noise from an image, by first eroding
the image to remove noise pixels, and then dilating the image to re-add the
edges. Improvements to the technique of Bloomberg were made by Bukhari et
al. to allow for the detection of drawings and graphs, instead of only halftone
images [4]. The current state-of-the-art uses Transformer based models in com-
bination with CNNs to segment images [1]. The most recent techniques make
use of large quantities of training data, whereas our method is rule-based and
requires no training data (except for Tesseract, as the most recent model is an
LSTM trained on large amounts of textual data). This task is somewhat the
complement of our task: the detection of visible text and non text versus the
detection of hidden text, while also having to filter out other non-text elements
such as figures and logos.

Redacted text detection is used by Bland et al. [2] as part of their method
for breaking text-redaction schemes, where they develop the X-Ray Tool1 for
detecting improper text redaction. Their detection method relies on information
on the location of text within a document, and detecting the existence of multiple
spaces between characters. If these spaces are coloured then it is assumed that
a block of redacted text is present. One of the major downsides of this approach
is that it relies on knowing the position of characters on the page, something
that is not present in scanned documents. At least for the Dutch redacted text
landscape, scanning and then again OCR-ing documents is the predominant
technique used by text-redaction tools. We thus need a method that works on
scanned documents.

3 Method

3.1 Dataset

Our manually labelled dataset consists of 170 pages with 1.530 redacted text
blocks from decision letters originating from Dutch ministeries written in 2020–
2022, originally published at https://open.overheid.nl and now available as a
curated dataset at the Dutch scientific Data repository DANS [11]. The set is
split into the 4 redaction types from Fig. 1. The support column in Table 1 spec-
ifies the number of examples per type. Redacted regions were annotated using
1 https://free.law/projects/x-ray.

https://open.overheid.nl
https://free.law/projects/x-ray


Detection of Redacted Text in Legal Documents 313

VGG Image Annotator [6] by two annotaters, each specializing in a redacting
type, with no data being annotated twice.

If there were humanly visible gaps between redaction blocks these were anno-
tated as separate blocks. Horizontally touching blocks on separate lines were
annotated as one block when the touching region was longer than the non touch-
ing one.

3.2 Algorithm for Detecting Redacted Text

Figure 2 shows the main steps of the algorithm with the output for each step. The
algorithm consists of 5 main steps, namely text detection, text removal, image
thresholding, contour detection, and a final contour filtering step to remove False
Positives usually coming from images and logos. For the precise details of the
algorithm together with examples of output for each step, we refer to the Github
repository. We now briefly describe the five steps.

Fig. 2. The steps in the redacted block detection algorithm shown on an example with
a gray redacted text containing the valediction of a letter (name, function, phone and
email have been redacted).

Preprocessing. In preparation for the text detection by Tesseract, three pre-
processing steps are applied to increase the quality of the image for Optical
Character Recognition (OCR), following Patil et al. [12]. First, the image is con-
verted to grayscale, after which dilation and erosion are applied to remove noise.
Finally, bilateral blur with a 5 by 5 kernel is used to further remove noise while
maintaining sharp edges, as proposed by Kumar [10].



314 R. van Heusden et al.

For the preparation of the image used for the contour detection, erosion and
dilation are applied to connect text redaction areas that are only separated by a
few pixels, but that should be considered one redacted block. We apply erosion
and dilation with a horizontal 1×3 and a vertical 3×1 kernel. We opted for this
small kernel size as it allows us to connect lines of borders of redacted blocks
while keeping the rest of the page mostly un-distorted. A larger kernel would
connect edges of more bounding boxes, but at the price of more false positives.
After the dilation and erosion, a bilateral blur with a kernel size of 5 by 5 is used
to remove noise from the image.

Text Detection and Removal. Tesseract (Version 5) [8] is run to obtain
bounding boxes of the text on a page. Because the documents are primarily in
Dutch, both the Dutch and English language files are used with Tesseract. Using
the confidence scores returned by Tesseract, all text with a confidence score of
65 or higher is removed, to avoid accidentally removing redaction blocks. The
text is removed by filling the detected text contours with white, as can be seen
in Fig. 2b A downside of this approach is that there can still be words left in
the text after this, which is why image thresholding is performed to remove this
text.

Image Thresholding. To remove the text missed by Tesseract, we use the
approach from Bukhari et al. [4] based on morphological operations. We thres-
hold the image, to only keep parts that are filled significantly, where we opted
for Otsu binarization in favor of a fixed threshold. We then apply another pass
of erosion and dilation with a 5 × 5 kernel, which removes text not detected by
Tesseract.

Contour Detection and Filtering. Here we use OpenCV to detect the coor-
dinates of the remaining blocks in the image. We remove rectangles that are
taller than they are wide (such as images, logos etc.), and also put a minimum
on the size of the rectangle, (0.025% of the page size). The output is thus a list
of bounding box coordinates that contain redacted text. Using these bounding
boxes we estimate the total number of characters that have been redacted by
using heuristics based on the used font size, and the total portion of the page
that has been redacted in terms of characters.

3.3 Evaluation Metrics

As text redaction is a segmentation task, we use the Panoptic Quality (PQ)
metric [9] for evaluation. In this approach, a pair of gold standard and predicted
redaction block is considered a True Positive if their IoU, measured in pixels,
is strictly larger than .5 (i.e., the overlapping region is strictly larger than the
concatenation of the (in our case usually two) non overlapping regions). The
Segmentation Quality (SQ) then is the mean IoU over the True Positives; the



Detection of Redacted Text in Legal Documents 315

Recognition Quality (RQ) is the F1 score and PQ is simply RQ weighted by SQ.
We aggregated the scores over all pages, in essence viewing the entire dataset
as one large image. We compute precision and recall using the same set of true
positives.

4 Results

Table 1 contains the evaluation of our algorithm, grouped by type of redaction.
There is little variation in the segmentation quality SQ and it is high. Thus if the
overlap is large enough (IoU > .5), segmentation goes very well. The recognition
quality RQ or F1 score on the other hand does vary a lot, from .86 for colored
blocks to .69 for (light)gray blocks. The precision and recall columns somewhat
explain these scores: the high F1 score for colored blocks is due to a strong recall
with a good precision; for the other 3 types, recall is much lower, and also lower
than precision. The algorithm has the most difficulty picking up the (light)gray
blocks.

Table 1. Panoptic quality metrics for our
redacted text detection method grouped by the
type of redaction. The support column contains
the number of redacted text segments used in
the evaluation.

SQ RQ/F1 PQ Precision Recall Support

color 0.89 0.86 0.77 0.84 0.89 247

black 0.92 0.79 0.73 0.85 0.75 371

border 0.93 0.76 0.71 0.85 0.69 264

gray 0.90 0.69 0.62 0.77 0.63 468

All 0.91 0.77 0.70 0.82 0.72 1.530

Looking into these errors we
found that the False Negatives
are mostly due because the legal
codes (like 5.1.2.e) within the
boundary boxes get recognized as
text, which causes part of the
redaction block to be removed
from the image. The thickness of
the border also plays a part, as
in some cases the line is too thin
and gets removed by the contour
filtering step. A similar explana-
tion holds for the gray colored
redacted text blocks: often the text within the blocks gets recognized, and the
entire block gets removed by the text removal step. If we changed the threshold-
ing step after the text removal to a fixed threshold instead of the Otsu variation,
the results improved for the gray type, but decreased slightly for the other types.
On a 2019 Macbook Pro with 16 GB of RAM and an 8th generation i5 CPU
our algorithm takes just over 2 s per page on average. Of this, 88% is used by
Tesseract, 10% by the PDF to PNG conversion, and just 2% by our detection
and pre- and post-processing.

5 Conclusion

We presented an algorithm for automatically detecting a wide range of differ-
ent redaction types using Tesseract and simple morphological operations. We
evaluated the algorithm using the Panoptic Quality method and found that the
algorithm performs best on redaction blocks that are black, colored or have a
mourning border, and that it does not perform well on blocks that are (light)gray.



316 R. van Heusden et al.

As a possible improvement of the algorithm, a pre-classification can be done on
the type of redaction block (or this information might already be present, given
that some suppliers use one type exclusively), after which the algorithm can be
fine-tuned for a specific class, by changing for example the threshold parameters
in the contour detection step.

Acknowledgements. This research was supported in part by the Netherlands
Organization for Scientific Research (NWO) through the ACCESS project grant
CISC.CC.016.

References

1. Biswas, S., Banerjee, A., Lladós, J., Pal, U.: DocSegTr: an instance-level end-to-
end document image segmentation transformer. arXiv preprint arXiv:2201.11438
(2022)

2. Bland, M., Iyer, A., Levchenko, K.: Story beyond the eye: glyph positions break
PDF text redaction. arXiv preprint arXiv:2206.02285 (2022)

3. Bloomberg, D.S.: Multiresolution morphological approach to document image anal-
ysis. In: Proceedings of the International Conference on Document Analysis and
Recognition (ICDAR), Saint-Malo, France (1991)

4. Bukhari, S.S., Shafait, F., Breuel, T.M.: Improved document image segmenta-
tion algorithm using multiresolution morphology. In: Document Recognition and
Retrieval XVIII, vol. 7874, pp. 109–116. SPIE (2011)

5. Data Protection Commission: Redacting Documents and Records (2021).
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/
%20Documents/%20and/%20Records.pd

6. Dutta, A., Zisserman, A.: The via annotation software for images, audio and video.
In: Proceedings of the 27th ACM International Conference on Multimedia (ICM),
pp. 2276–2279 (2019)

7. United States Government: Freedom of information act (2023). https://www.foia.
gov

8. Kay, A.: Tesseract: an open-source optical character recognition engine. Linux J.
2007(159), 2 (2007)

9. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CCVPR), pp. 9404–9413 (2019)

10. Kumar, B.S.: Image denoising based on Gaussian/Bilateral filter and its method
noise thresholding. Sig. Image Video Process. 7(6), 1159–1172 (2013)

11. Marx, M.: Woogle dump. Technical report, DANS (2023). https://doi.org/10.
17026/dans-zau-e3rk

12. Patil, S., et al.: Enhancing optical character recognition on images with mixed text
using semantic segmentation. J. Sens. Actuator Netw. 11(4), 63 (2022)

13. Rijksoverheid: Wet Open Overheid (woo) (2023). https://www.rijksoverheid.nl/
onderwerpen/wet-open-overheid-woo

14. Zylab: The Zylab ediscovery Platform (2023). https://www.zylab.com

http://arxiv.org/abs/2201.11438
http://arxiv.org/abs/2206.02285
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/%20Documents/%20and/%20Records.pd
https://www.dataprotection.ie/sites/default/files/uploads/2021-08/Redacting/%20Documents/%20and/%20Records.pd
https://www.foia.gov
https://www.foia.gov
https://doi.org/10.17026/dans-zau-e3rk
https://doi.org/10.17026/dans-zau-e3rk
https://www.rijksoverheid.nl/onderwerpen/wet-open-overheid-woo
https://www.rijksoverheid.nl/onderwerpen/wet-open-overheid-woo
https://www.zylab.com

